

1310 N. Limestone Street Gaffney, South Carolina 29340

(864) 487-7551 (800) 768-4895

Capacitors Energy Stored

Capacitor - Energy Stored

The work done in establishing the electric field in a capacitor, and hence the amount of energy stored - can be expressed as

$$W = 1/2 C V^2$$
 (1)

where

W = energy stored - or work done in establishing the electric field (joules, J)

C = capacitance (farad, F, μF)

V = potential difference (voltage, V)

Capacitor - Power Generated

Since power is energy dissipated in time - the potential power generated by a capacitor can be expressed as

$$P = dW/dt$$
 (2)

where

P = potential power (watts, W)

dt = dissipation time (s)

Example - Capacitor, energy stored and power generated

The energy stored in a 10 μ F capacitor charged to 230 V can be calculated as

$$W = 1/2 (10 \ 10^{-6} \ F) (230 \ V)^2$$
$$= 0.26 \ J$$

in theory - if this energy is dissipated within $5 \mu s$ the potential power generated can be calculated as

$$P = (0.26 \text{ Joules}) / (5 \cdot 10^{-6} \text{ s})$$

= 52000 W

= 52 kW

Be aware that in any real circuit, discharge starts at a peak value and declines. The energy dissipated is a very rough average power over the discharge pulse.

Capacitor - Time to Discharge at Constant Power Load

The time to discharge a capacitor at constant power load can be expressed as

$$dt = 1/2 C (V_s^2 - V_f^2) / P$$
 (3)

where

dt = discharge time (s)

 V_s = start voltage (V)

 V_f = final voltage (V)